980 字
5 分钟
BZOJ1004 [HNOI2008] Cards
Description
小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有种颜色:红色,蓝色,绿色.他询问 Sun 有多少种染色方案, Sun 很快就给出了答案.进一步,小春要求染出张红色,张蓝色,张绝色.他又询问有多少种方案, Sun 想了一下,又给出了正确答案. 最后小春发明了种不同的洗牌法,这里他又问 Sun 有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗成另一种. Sun 发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以的余数(为质数).
Input
第一行输入 个整数:。。
接下来 行,每行描述一种洗牌法,每行有 n 个用格隔开的整数 ,恰为 到 的一个排列,表示使用这种洗牌法,第 位变为原来的 位的牌。输入数据保证任意多次洗牌都可用这 种洗牌法中的一种代替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。
Output
不同染法除以的余数
Sample Input
1 1 1 2 7
2 3 1
3 1 2
Sample Output
2
HINT
有 种本质上不同的染色法 和 ,使用洗牌法 一次可得 和 ,使用洗牌法 一次可得 和 。
数据满足 。
题解
一道比较基础的题目
这里先介绍一下定理
设为在置换下不变的元素的个数。 表示本质不同的方案数
则
在本题中
我们群的大小为
对于每一个置换,我们都可以求出它不变的元素个数
首先求出所有的环, 因为我们的环上必须是同一种颜色才能使他这个元素在置换下不变(这里把涂色方案看做是一个元素)
我们求出所有环之后就可以出方案的个数
!要注意如果要使所有的洗牌法构成一个群,我们必须有一个单位元, 也就是存在一个置换使得任意一个置换与他运算完不变
在本题中显然是一下的的置换, 但这个置换不是读入的, 而是要自己加上去的。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int MOD;
const int MAXN = 65;
int a[MAXN];
long long pow_mod(long long a, int b)
{
long long ans = 1;
while (b)
{
if (b & 1) ans = ans * a % MOD;
b >>= 1;
a = a * a % MOD;
}
return ans;
}
int vis[MAXN], st[MAXN];
int dfs(int x, int C)
{
if (vis[x] == C) return 0;
vis[x] = C;
return dfs(a[x], C) + 1;
}
int DP[2][25][25][25];
int main()
{
int Sr = read(), Sb = read(), Sg = read(), m = read();
MOD = read();
int n = Sr + Sb + Sg;
int Ans = 0;
memset (vis, -1, sizeof (vis));
for (int i = 0; i <= m; i++)
{
for (int j = 1; j <= n; j++)
a[j] = (i == 0 ? (j) : read());
int cnt = 0;
for (int j = 1; j <= n; j++)
if (vis[j] != i)
st[++cnt] = dfs(j, i);
memset (DP, 0, sizeof (DP));
DP[0][Sr][Sb][Sg] = 1;
int now = 0;
for (int j = 1; j <= cnt; j++)
{
now ^= 1;
memset(DP[now], 0, sizeof (DP[now]));
for (int r = 0; r <= Sr; r++)
for (int b = 0; b <= Sb; b++)
for (int g = 0; g <= Sg; g++)
{
if (r + st[j] <= Sr) DP[now][r][b][g] = (DP[now][r][b][g] + DP[now ^ 1][r + st[j]][b][g]) % MOD;
if (b + st[j] <= Sb) DP[now][r][b][g] = (DP[now][r][b][g] + DP[now ^ 1][r][b + st[j]][g]) % MOD;
if (g + st[j] <= Sg) DP[now][r][b][g] = (DP[now][r][b][g] + DP[now ^ 1][r][b][g + st[j]]) % MOD;
}
}
Ans = (DP[now][0][0][0] + Ans) % MOD;
}
printf ("%d\n", 1ll * Ans * pow_mod(m + 1, MOD - 2) % MOD);
}
BZOJ1004 [HNOI2008] Cards
https://www.nekomio.com/posts/133/