分类
标签
2-SAT AC自动机 BFS CDQ dfs DP fail树 FFT FFT&NTT FWT hash KD-Tree KMP LCA SPFA STL Tarjan Treap Trie 主席树 乱搞 二分 二分图匹配 二分答案 二维SPFA 交互 位运算 其他 最小生成树 分块 区间DP 半平面交 博弈论 可持久化 可持久化Trie树 后缀数组 图库 平衡树 并查集 插头DP 数学 数论 无旋Treap 日记 暴力 权值树状数组 栈 树DP 树套树 树状数组 树贪心 概率DP 模拟 欧拉定理 点分治 状压DP 生成函数 矩阵乘 线性规划 线段树 组合 网络流 群论 莫比乌斯反演 计算几何 贪心 费用流 高斯消元
535 字
3 分钟
BZOJ2716 [Violet 3]天使玩偶
Description
Input
Output
Sample Input & Output
HINT
题解
KD-Tree带插入的板子。
应该rebuild
的。
但没rebuild
就过了。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
const int INF = 0x3f3f3f3f;
const double alpha = 0.756;
const int MAXN = 5e5 + 5;
int now;
struct Point
{
int d[2];
int &operator[](const int &x)
{
return d[x];
}
inline bool operator < (const Point &x) const
{
return d[now] == x.d[now] ? d[now ^ 1] < x.d[now ^ 1] : d[now] < x.d[now];
}
}a[MAXN], cur;
#define dis(_, __) (\
int(abs(_[0] - __[0]) + abs(_[1] - __[1]))\
)
#define size(_) ((_) ? (_)->s : 0)
struct Node
{
Node *ch[2];
Point v;
int s, d;
int Max[2], Min[2];
Node(Point x)
{
ch[0] = ch[1] = NULL;
v = x;
s = 1, d = now;
Max[0] = Min[0] = x[0];
Max[1] = Min[1] = x[1];
}
Node(){;}
inline bool operator < (const Node &x) const
{
return v < x.v;
}
bool IsBad()
{
return ((size(ch[0]) > s * alpha) || (size(ch[1]) > s * alpha));
}
void Pushup(Node *x)
{
if (!x) return;
for (int i = 0; i <= 1; i++) Min[i] = min(Min[i], x->Min[i]);
for (int i = 0; i <= 1; i++) Max[i] = max(Max[i], x->Max[i]);
s += x->s;
}
int min_dis()
{
int ans = 0;
ans += max(Min[0] - cur[0], 0) + max(cur[0] - Max[0], 0);
ans += max(Min[1] - cur[1], 0) + max(cur[1] - Max[1], 0);
return ans;
}
}*root;
inline void Build(Node *&rt, int l, int r, int d = 0)
{
if (l > r) return;
int mid = l + r >> 1;
now = d;
nth_element(a + l, a + mid, a + r + 1);
rt = new Node(a[mid]);
Build(rt->ch[0], l, mid - 1, d ^ 1);
Build(rt->ch[1], mid + 1, r, d ^ 1);
rt->s = 1;
rt->Pushup(rt->ch[0]);
rt->Pushup(rt->ch[1]);
}
Node **res;
inline void Insert(Node *&rt)
{
if (rt == NULL)
{
rt = new Node(cur);
res = NULL;
return;
}
now = rt->d;
if (cur < rt->v) Insert(rt->ch[0]);
else Insert(rt->ch[1]);
rt->s = 1;
rt->Pushup(rt->ch[0]);
rt->Pushup(rt->ch[1]);
if (rt->IsBad()) res = &rt;
}
inline void Insert(Point x)
{
cur = x;
Insert(root);
}
int Min_ans;
inline void Query(Node *rt)
{
if (!rt) return;
// if (rt->min_dis() > Min_ans) return;
Min_ans = min(Min_ans, dis(rt->v, cur));
int dis_l = rt->ch[0] ? rt->ch[0]->min_dis() : INF;
int dis_r = rt->ch[1] ? rt->ch[1]->min_dis() : INF;
if (dis_l < dis_r)
{
Query(rt->ch[0]);
if (dis_r < Min_ans) Query(rt->ch[1]);
}
else
{
Query(rt->ch[1]);
if (dis_l < Min_ans) Query(rt->ch[0]);
}
}
inline int Query(Point x)
{
cur = x;
Min_ans = INF;
Query(root);
return Min_ans;
}
int main()
{
// freopen("1.in", "r", stdin);
// freopen("2.out", "w", stdout);
int n, m;
n = read(), m = read();
for (int i = 1; i <= n; i++)
a[i][0] = read(), a[i][1] = read();
Build(root, 1, n);
Point x;
while (m--)
{
int t = read();
if (t == 1)
{
x[0] = read(), x[1] = read();
Insert(x);
}
else
{
x[0] = read(), x[1] = read();
printf ("%d\n", Query(x));
}
}
}